Double Shield Expansion Anchor

PRODUCT DESCRIPTION

The Double is a dual expansion machine bolt anchor particularly suited for materials of questionable strength. It can be used in solid concrete, block, brick, and stone. Job site tests are recommended when used in base materials of questionable strength.

FEATURES AND BENEFITS

- Performs in base material of questionable strength
- Internally threaded anchor for easy removability and service work
- Corrosion resistant body

APPROVALS AND LISTINGS

Federal GSA Specification - Meets the descriptive and proof load requirements of

$$
\text { CID A-A 1923A, Type } 3
$$

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090Metal Fastenings. Expansion anchors shall be Double as supplied by Powers Fasteners, Inc., Brewster, NY.
SECTION CONTENTS Page No.
General Information. 1
Installation and Material Specifications 1
Performance Data 2
Design Criteria 3
Ordering Information 4

Double

THREAD VERSION

UNC Thread

ANCHOR MATERIALS

Zamac Alloy
ROD/ANCHOR SIZE RANGE (TYP.)
1/4" to 3/4" diameter
SUITABLE BASE MATERIALS
Normal-weight Concrete
Hollow Concrete Masonry (CMU)
Brick Masonry

INSTALLATION AND MATERIAL SPECIFICATIONS
Installation Specifications

Dimension	Rod/Anchor Diameter, d					
	$\mathbf{1 / 4 "}$	$\mathbf{5 / 1 6 "}$	$\mathbf{3 / 8 "}$	$\mathbf{1 / 2 "}$	$\mathbf{5 / 8 "}$	$\mathbf{3 / 4 "}$
ANSI Drill Bit Size, $\mathrm{d}_{\text {bit }}$ (in.)	$1 / 2$	$5 / 8$	$3 / 4$	$7 / 8$	1	$11 / 4$
Max. Tightening Torque, $T_{\max }$ (ft:lbs.)	5	7	10	20	30	60
Sleeve Length (in.)	1	$13 / 16$	$19 / 16$	2	$21 / 4$	$31 / 4$
Thread Size (UNC)	$1 / 4-20$	$5 / 16-18$	$3 / 8-16$	$1 / 2-13$	$5 / 8-11$	$3 / 4-10$
Thread Length In Cone (in.)	$1 / 2$	$1 / 2$	$5 / 8$	$3 / 4$	$7 / 8$	$11 / 8$
Overall Anchor Length (in.)	$13 / 8$	$15 / 8$	2	$21 / 2$	$23 / 4$	$315 / 16$

Material Specifications

Anchor Component	Component Material
Anchor Shield	Zamac Alloy
Cone	Zamac Alloy

Installation Guidelines

Drill a hole into the base material to the minimum depth required. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15. Do not expand the anchor prior to installation.

Do not over drill the hole unless the application calls for a subset anchor.

Insert anchor into the hole, threaded cone end first until the outer sleeve is flush with the surface of the base material.

Position fixture, then insert screw or bolt and tighten. For maximum expansion, the upper cone should protrude slightly before setting. The bolt must engage a minimum of $2 / 3$ of the anchor threads.

PERFORMANCE DATA

Ultimate Load Capacities for Double Expansion Anchor in Normal-Weight Concrete ${ }^{1,2}$

Rod/Anchor Diameter d in. (mm)	Minimum Embedment Depth h_{v} in. (mm)	Minimum Concrete Compressive Strength (f^{\prime})					
		$\mathbf{2 , 0 0 0} \mathbf{p s i}(13.8 \mathrm{MPa})$		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
		Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{gathered} 11 / 4 \\ (31.8) \end{gathered}$	$\begin{gathered} 710 \\ (3.2) \end{gathered}$	$\begin{aligned} & 1,110 \\ & (5.0) \end{aligned}$	$\begin{aligned} & \hline 900 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 1,135 \\ & (5,2) \end{aligned}$	$\begin{aligned} & 1,220 \\ & (5.5) \end{aligned}$	$\begin{aligned} & 1,335 \\ & (6.0) \end{aligned}$
$\begin{aligned} & \hline 5 / 16 \\ & (7.9) \end{aligned}$	$\begin{gathered} 11 / 2 \\ (38.1) \end{gathered}$	$\begin{aligned} & 1,130 \\ & (5.1) \end{aligned}$	$\begin{aligned} & 1,735 \\ & (7.8) \end{aligned}$	$\begin{aligned} & 1,500 \\ & (6.7) \end{aligned}$	$\begin{gathered} 2,020 \\ (9.1) \end{gathered}$	$\begin{gathered} \hline 2,160 \\ (9.7) \end{gathered}$	$\begin{gathered} 2,155 \\ (9.7) \end{gathered}$
$\begin{gathered} \hline 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} 13 / 4 \\ (44.5) \end{gathered}$	$\begin{aligned} & \hline 1,365 \\ & (6.1) \end{aligned}$	$\begin{aligned} & \hline 2,690 \\ & (12.1) \end{aligned}$	$\begin{aligned} & \hline 2,000 \\ & (9.0) \end{aligned}$	$\begin{aligned} & \hline 3,000 \\ & (13.5) \end{aligned}$	$\begin{aligned} & \hline 3,085 \\ & (13.9) \end{aligned}$	$\begin{aligned} & \hline 4,030 \\ & (18.1) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{gathered} 21 / 4 \\ (57.2) \end{gathered}$	$\begin{aligned} & 2,590 \\ & (11.7) \end{aligned}$	$\begin{aligned} & 3,740 \\ & (16.8) \end{aligned}$	$\begin{aligned} & \hline 3,550 \\ & (16.0) \end{aligned}$	$\begin{aligned} & \hline 4,310 \\ & (19.4) \end{aligned}$	$\begin{aligned} & 4,645 \\ & (20.9) \end{aligned}$	$\begin{aligned} & \hline 6,930 \\ & (31.2) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{gathered} 21 / 2 \\ (63.5) \end{gathered}$	$\begin{aligned} & \hline 4,290 \\ & (19.3) \end{aligned}$	$\begin{aligned} & 9,640 \\ & (43.4) \end{aligned}$	$\begin{aligned} & \hline 6,150 \\ & (27.7) \end{aligned}$	$\begin{aligned} & 10,270 \\ & (46.2) \end{aligned}$	$\begin{aligned} & \hline 6,890 \\ & (81.0) \end{aligned}$	$\begin{aligned} & 11,580 \\ & (52.2) \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{gathered} 31 / 2 \\ (88.9) \end{gathered}$	$\begin{aligned} & 6,000 \\ & (27.0) \end{aligned}$	$\begin{aligned} & 10,920 \\ & (49.2) \end{aligned}$	$\begin{aligned} & \hline 8,150 \\ & (36.7) \end{aligned}$	$\begin{aligned} & 13,330 \\ & (60.0) \end{aligned}$	$\begin{aligned} & 11,510 \\ & (51.8) \end{aligned}$	$\begin{aligned} & 14,480 \\ & (65.2) \end{aligned}$

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation,
2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.

Allowable Load Capacities for Double Expansion Anchor in Normal-Weight Concrete ${ }^{1,2,3}$

Rod/Anchor Diameter d in. (mm)	```Minimum Embedment Depth hv in. (mm)```	Minimum Concrete Compressive Strength (f^{\prime})					
		$\mathbf{2 , 0 0 0} \mathbf{p s i}$ (13.8 MPa)		4,000 psi (27.6 MPa)		6,000 psi (41.4 MPa)	
		Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{gathered} 11 / 4 \\ (31.8) \end{gathered}$	$\begin{aligned} & 180 \\ & (0.8) \end{aligned}$	$\begin{aligned} & 280 \\ & (1.3) \end{aligned}$	$\begin{gathered} 225 \\ (1.0) \end{gathered}$	$\begin{aligned} & 285 \\ & (1.3) \end{aligned}$	$\begin{aligned} & 305 \\ & (1.4) \end{aligned}$	$\begin{array}{r} 335 \\ (1.5) \end{array}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \end{aligned}$	$\begin{gathered} 11 / 2 \\ (38.1) \end{gathered}$	$\begin{gathered} 285 \\ (1.3) \end{gathered}$	$\begin{aligned} & 435 \\ & (20) \end{aligned}$	$\begin{gathered} 375 \\ (1.7) \end{gathered}$	$\begin{aligned} & 505 \\ & (2.3) \end{aligned}$	$\begin{gathered} 540 \\ (2.4) \end{gathered}$	$\begin{gathered} 540 \\ (2.4) \end{gathered}$
$\begin{gathered} \hline 3 / 8 \\ (9.5) \end{gathered}$	$\begin{gathered} 13 / 4 \\ (44.5) \end{gathered}$	$\begin{gathered} 340 \\ (1.5) \end{gathered}$	$\begin{gathered} 675 \\ (3.0) \end{gathered}$	$\begin{gathered} 500 \\ (2.3) \end{gathered}$	$\begin{aligned} & \hline 750 \\ & (3.4) \end{aligned}$	$\begin{gathered} 770 \\ (3.5) \end{gathered}$	$\begin{aligned} & \hline 1,010 \\ & (4.5) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{gathered} 21 / 4 \\ (57.2) \end{gathered}$	$\begin{aligned} & 650 \\ & (2.9) \end{aligned}$	$\begin{aligned} & 935 \\ & (4.2) \end{aligned}$	$\begin{aligned} & 890 \\ & (4.0) \end{aligned}$	$\begin{aligned} & \hline 1,080 \\ & (4.9) \end{aligned}$	$\begin{aligned} & \hline 1,160 \\ & (5.2) \end{aligned}$	$\begin{aligned} & 1,735 \\ & (7.8) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \end{gathered}$	$\begin{gathered} 21 / 2 \\ (63.5) \end{gathered}$	$\begin{aligned} & 1,075 \\ & (4.8) \end{aligned}$	$\begin{aligned} & 2,410 \\ & (10.9) \end{aligned}$	$\begin{aligned} & 1,540 \\ & (6.9) \end{aligned}$	$\begin{aligned} & 2,570 \\ & (11.6) \end{aligned}$	$\begin{aligned} & 1,725 \\ & (20.3) \end{aligned}$	$\begin{aligned} & 2,895 \\ & (13.1) \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & 31 / 2 \\ & (88.9) \end{aligned}$	$\begin{aligned} & \hline 1,500 \\ & (6.8) \end{aligned}$	$\begin{aligned} & \hline 2,730 \\ & (12.3) \end{aligned}$	$\begin{aligned} & \hline 2,040 \\ & (9.2) \end{aligned}$	$\begin{aligned} & 3,335 \\ & (15.0) \end{aligned}$	$\begin{aligned} & \hline 2,880 \\ & (13.0) \end{aligned}$	$\begin{aligned} & \hline 3,620 \\ & (16.3) \end{aligned}$

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, overhead and in sustained tensile loading applications.
2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.
3. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

PERFORMANCE DATA

Ultimate and Allowable Load Capacities for Double Expansion Anchor in Hollow Concrete Masonry ${ }^{1,2,3}$

Rod/Anchor Diameter d in. (mm)	Minimum Embedment Depth h_{v} in. (mm)	$\boldsymbol{f}_{\boldsymbol{m}}^{\prime} \geq \mathbf{1 , 5 0 0}$ psi (10.4 MPa)			
		Ultimate Load		Allowable Load	
		Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \\ \hline \end{gathered}$	$\begin{array}{r} 11 / 4 \\ (31.8) \\ \hline \end{array}$	$\begin{aligned} & \hline 885 \\ & (4.0) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,350 \\ & (6.1) \\ & \hline \end{aligned}$	$\begin{array}{r} 175 \\ (0.8) \\ \hline \end{array}$	$\begin{array}{r} 270 \\ (1.2) \\ \hline \end{array}$
$\begin{array}{r} \hline 5 / 16 \\ (7.9) \\ \hline \end{array}$	$\begin{array}{r} 11 / 2 \\ (38.1) \\ \hline \end{array}$	$\begin{aligned} & 1,295 \\ & (5.8) \end{aligned}$	$\begin{aligned} & 1,635 \\ & (7.4) \end{aligned}$	$\begin{array}{r} \hline 260 \\ (1.2) \end{array}$	$\begin{array}{r} \hline 325 \\ (1.5) \end{array}$
$\begin{array}{r} \hline 3 / 8 \\ (9.5) \\ \hline \end{array}$	$\begin{array}{r} 11 / 2 \\ (38.1) \\ \hline \end{array}$	$\begin{aligned} & \hline 1,575 \\ & (7.1) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2,160 \\ & (9.7) \end{aligned}$	$\begin{array}{r} \hline 315 \\ (1.4) \\ \hline \end{array}$	$\begin{gathered} \hline 430 \\ (1.9) \\ \hline \end{gathered}$
$\begin{gathered} 1 / 2 \\ (12.7) \\ \hline \end{gathered}$	$\begin{array}{r} 11 / 2 \\ (38.1) \\ \hline \end{array}$	$\begin{array}{r} 2,710 \\ (12.2) \\ \hline \end{array}$	$\begin{aligned} & 3,130 \\ & (14.1) \end{aligned}$	$\begin{gathered} 540 \\ (2.4) \end{gathered}$	$\begin{array}{r} 625 \\ (2.8) \\ \hline \end{array}$

1. Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N , Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry cells may be grouted. Masonry compressive strength must be at the specified minimum at the time of installation ($\left.f^{\prime} m \geq 1,500 \mathrm{psi}\right)$.
2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.
3. Anchors with diameters of $3 / 8^{\prime \prime}$ and $1 / 2^{\prime \prime}$ installed in hollow concrete masonry units are limited to one anchor per unit cell.

Ultimate and Allowable Load Capacities for Double Shell Expansion Anchor in Clay Brick Masonry ${ }^{1,2}$

Rod/Anchor Diameter d in. (mm)	Minimum Embedment Depth h_{v} in. (mm)	Structural Brick Masonry $\boldsymbol{f}_{\boldsymbol{m}}^{\prime} \geq \mathbf{1 , 5 0 0} \mathbf{p s i}(10.4 \mathrm{MPa})$			
		Ultimate Load		Allowable Load	
		Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)
$\begin{gathered} 1 / 4 \\ (6.4) \end{gathered}$	$\begin{aligned} & 11 / 4 \\ & (31.8) \end{aligned}$	$\begin{aligned} & 1,175 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 1,585 \\ & (7,1) \end{aligned}$	$\begin{aligned} & \hline 235 \\ & (1.1) \end{aligned}$	$\begin{gathered} 315 \\ (1.4) \end{gathered}$
$\begin{aligned} & 5 / 16 \\ & (7.9) \end{aligned}$	$\begin{array}{r} 11 / 2 \\ (38.1) \end{array}$	$\begin{aligned} & 1,585 \\ & (7.1) \end{aligned}$	$2,040$	$\begin{aligned} & 315 \\ & (1.4) \end{aligned}$	$\begin{aligned} & 410 \\ & (1.8) \end{aligned}$
$\begin{array}{r} 3 / 8 \\ (9.5) \\ \hline \end{array}$	$\begin{array}{r} 13 / 4 \\ (44.5) \end{array}$	$\begin{aligned} & 1,830 \\ & (8.2) \end{aligned}$	$\begin{aligned} & 3,590 \\ & (16.2) \end{aligned}$	$\begin{array}{r} 365 \\ (1.6) \end{array}$	$\begin{aligned} & 720 \\ & (3.2) \end{aligned}$
$\begin{gathered} 1 / 2 \\ (12.7) \end{gathered}$	$\begin{aligned} & 21 / 4 \\ & (57.2) \end{aligned}$	$\begin{aligned} & 3,420 \\ & (15.4) \end{aligned}$	$\begin{aligned} & 5,185 \\ & (23.3) \end{aligned}$	$\begin{aligned} & \hline 685 \\ & (3.1) \end{aligned}$	$\begin{aligned} & 1,035 \\ & (4.7) \end{aligned}$
$\begin{gathered} 5 / 8 \\ (15.9) \\ \hline \end{gathered}$	$\begin{array}{r} 21 / 2 \\ (63.5) \end{array}$	$\begin{aligned} & 4,460 \\ & (19.8) \end{aligned}$	$\begin{aligned} & 6,055 \\ & (27.2) \end{aligned}$	$\begin{aligned} & \hline 890 \\ & (4.0) \end{aligned}$	$\begin{aligned} & 1,210 \\ & (5.4) \\ & \hline \end{aligned}$
$\begin{gathered} 3 / 4 \\ (19.1) \end{gathered}$	$\begin{aligned} & 31 / 2 \\ & (88.9) \end{aligned}$	$\begin{aligned} & 6,000 \\ & (26.7) \end{aligned}$	$\begin{aligned} & 7,935 \\ & (35.7) \end{aligned}$	$\begin{aligned} & 1,200 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 1,585 \\ & (7.1) \end{aligned}$

1. Tabulated load values are for anchors installed in multiple wythe, minimum Grade SW, solid clay brick masonry walls conforming to ASTM C 62 . Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation ($f^{\prime} m \geq 1,500 \mathrm{psi}$).
2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 20 or higher may be necessary depending upon the application such as life safety, and in sustained tensile loading applications.

DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

Combined Loading

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$
\left(\frac{N_{u}}{N_{n}}\right)+\left(\frac{V_{u}}{V_{n}}\right) \leq 1
$$

Where: $\quad N_{u}=$ Applied Service Tension Load
$N_{n}=$ Allowable Tension Load
$V_{u}=$ Applied Service Shear Load
$V_{n}=$ Allowable Shear Load

Load Adjustment Factors for Spacing and Edge Distances ${ }^{1}$

Anchor Installed in Normal-Weight Concrete						
Anchor Dimension	Load Type	Critical Distance (Full Anchor Capacity)	Critical Load Factor	Minimum Distance (Reduced Capacity)	Minimum Load Factor	
Spacing (s)	Tension and Shear	$S_{C r}=10 d$	$F_{N_{S}}=F_{V S}=1.0$	$S_{\min }=5 d$	$F_{N_{S}}=F_{V_{C}}=0.50$	
Edge Distance (c)	Tension	$C_{c r}=12 d$	$F_{N_{C}}=1.0$	$C_{\min }=5 d$	$F_{N_{C}}=0.80$	
	Shear	$C_{C r}=12 d$	$F_{V C}=1.0$	$C_{m i n}=5 d$	$F_{V_{C}}=0.50$	

[^0]DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)
Load Adjustment Factors for Normal-Weight Concrete

Spacing, Tension ($F_{N_{S}}$) \& Shear ($F_{v_{S}}$)							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$S_{\text {cr }}$ (in.)		21/2	$31 / 8$	$33 / 4$	5	$61 / 4$	$71 / 2$
$S_{\text {min }}$ (in.)		$11 / 4$	$19 / 16$	$17 / 8$	$21 / 2$	$31 / 8$	$33 / 4$
	11/4	0.50					
	19/16	0.63	0.50				
	1718	0.75	0.60	0.50			
	$21 / 2$	1.00	0.80	0.67	0.50		
	$31 / 8$		1.00	0.83	0.63	0.50	
	$33 / 4$			1.00	0.75	0.60	0.50
	5				1.00	0.80	0.67
	$61 / 4$					1.00	0.83
	$71 / 2$						1.00

Edge Distance, Tension (N_{C})							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$C_{\text {cr }}$ (in.)		3	$33 / 4$	$41 / 2$	6	$71 / 2$	9
$C_{\text {min }}$ (in.)		2	$21 / 2$	3	4	5	6
	2	0.80					
	21/2	0.90	0.80				
	3	1.00	0.88	0.80			
	$33 / 4$		1.00	0.90			
	4			0.93	0.80		
	$41 / 2$			1.00	0.85		
	5				0.90	0.80	
	6				1.00	0.88	0.80
	$71 / 2$					1.00	0.90
	9						1.00

Edge Distance, Shear ($F_{v_{c}}$)							
Dia. (in.)		1/4	5/16	3/8	1/2	5/8	3/4
$\mathrm{C}_{\text {cr }}$ (in.)		3	$33 / 4$	$41 / 2$	6	$71 / 2$	9
$C_{\text {min }}$ (in.)		2	$21 / 2$	3	4	5	6
	2	0.50					
	21/2	0.75	0.50				
	3	1.00	0.70	0.50			
	$33 / 4$		1.00	0.75			
	4			0.83	0.50		
	41/2			1.00	0.63		
	5				0.75	0.50	
	6				1.00	0.70	0.50
	$71 / 2$					1.00	0.75
	9						1.00

Notes: For anchors loaded in tension and shear, the critical spacing (scr) is equal to 10 anchor diameters $(10 \mathrm{~d})$ at which the anchor achieves 100% of load. Minimum spacing ($s \min$) is equal to 5 anchor diameters ($5 d$) at which the anchor achieves 50% of load.

Notes: For anchors loaded in tension, the critical edge distance ($c_{r r}$) is equal to 12 anchor diameters ($12 d$) at which the anchor achieves 100% of load. Minimum edge distance ($\mathrm{c}_{\mathrm{min}}$) is equal to 8 anchor diameters (8d) at which the anchor achieves 80\% of load.

Notes: For anchors loaded in shear, the critical edge distance $\left(c_{c r}\right)$ is equal to 12 anchor diameters (12 d) at which the anchor achieves 100% of load.
Minimum edge distance ($c_{\text {min }}$) is equal to 8 anchor diameters ($8 d$) at which the anchor achieves 50% of load.

ORDERING INFORMATION

Double Expansion Anchor

Catalog Number	Rod/Anchor Diameter	Drill Diameter	Overall Length	Minimum Hole Depth	Standard Box	Standard Carton	Wt./ 100
9510	$1 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$13 / 8^{\prime \prime}$	$11 / 4^{\prime \prime}$	50	500	4
9515	$5 / 1^{\prime \prime}$	$5 / 8^{\prime \prime}$	$15 / 8^{\prime \prime}$	$11 / 2^{\prime \prime}$	50	500	$71 / 2$
9520	$3 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$	$2 "^{\prime \prime}$	$13 / 4^{\prime \prime}$	50	250	$121 / 2$
9525	$1 / 2^{\prime \prime}$	$7 / 8^{\prime \prime}$	$21 / 2^{\prime \prime}$	$21 / 4^{\prime \prime}$	25	250	18
9530	$5 / 8^{\prime \prime}$	$1^{\prime \prime}$	$23 / 4^{\prime \prime}$	$21 / 2^{\prime \prime}$	25	100	$251 / 2$
9535	$3 / 4^{\prime \prime}$	$11 / 4^{\prime \prime}$	$315 / 6^{\prime \prime}$	$31 / 2^{\prime \prime}$	10	50	$541 / 2$

[^0]: . Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

